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ABSTRACT 

Background: Steatotic liver disease (SLD), including metabolic dysfunction-associated 

steatotic liver disease (MASLD) and non-alcoholic steatohepatitis (NASH), affects nearly 

30% of the global population and poses a major public health challenge. Diagnosis still 

depends heavily on liver biopsy, which is invasive, prone to sampling error, and unsuitable 

for widespread screening. These limitations have driven growing interest in artificial 

intelligence (AI) as a non-invasive diagnostic solution. Objective: To evaluate the current 

state and performance of AI technologies used for diagnosing, staging, and predicting 

progression in steatotic liver disease across imaging, electronic health record (EHR) 

analysis, and digital pathology. Methods: A comprehensive review was conducted, 

examining recent AI applications in CT, MRI, and ultrasound imaging, EHR-based 

machine learning models, and digital pathology platforms. Reported diagnostic accuracy, 

predictive performance metrics, technical strengths, and clinical limitations were analyzed. 

Results: Deep learning models applied to CT imaging demonstrated high accuracy in 

staging fibrosis, with AUC values of 0.97 for advanced fibrosis (≥F3) and 0.95 for cirrhosis 

(F4). AI-assisted ultrasound achieved an AUC of 0.98 for NAFLD detection. EHR-based 

tools, such as NASHmap, showed moderate predictive ability (AUC 0.76). Progression-

prediction models reached AUROC values of 0.87 for forecasting fibrosis within four years. 

In digital pathology, AI systems like qFibrosis® provided superior reproducibility (89–93%) 

and identified treatment effects missed by conventional histology. Conclusion: AI offers 

accurate, scalable, and objective alternatives to invasive diagnostics in liver disease, 

particularly for ruling out advanced fibrosis and predicting progression. However, 

challenges persist, including algorithmic bias, limited generalizability, opacity of deep 

learning models, regulatory constraints, and slow clinical translation. Future advancement 

requires multimodal data integration, robust external validation, improved transparency, 

and clear governance frameworks. 

Keywords: Steatotic liver disease, MASLD, NASH, artificial intelligence, deep learning, liver 

fibrosis, non-invasive diagnostics, digital pathology, EHR models, risk prediction. 

INTRODUCTION 

Fatty liver disease, |known as NAFLD, MASLD, or simply steatotic liver disease, has quietly 

become the most common chronic liver condition in the world. The numbers are 

staggering: nearly one in three people globally now have this condition, representing a 

prevalence of about 30% (1). Even more concerning, this figure has jumped by over 50% in 

just three decades, between 1990 and 2019. 

https://jhrlmc.com/index.php/home/article/view/1887
https://doi.org/10.61919/jhrr.v5i10.1887
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What makes this disease particularly tricky is that it exists on a spectrum. Some people 

have simple fat accumulation in the liver (what doctors call hepatic steatosis), while others 

develop a more aggressive inflammatory form known as NASH (non-alcoholic 

steatohepatitis). This distinction matters enormously because NASH can lead to serious 

complications: scarring of the liver (fibrosis), cirrhosis, liver cancer, and ultimately liver 

failure (2). 

The progression statistics paint a sobering picture. When someone develops NASH, there’s 

a 30–40% chance they’ll go on to develop some degree of liver scarring, and about 15–20% 

will eventually develop cirrhosis (3). These aren’t just numbers, they represent millions of 

people worldwide who need effective screening and early intervention. 

WHY CURRENT DIAGNOSTIC METHODS FALL SHORT 

Here’s the paradox: despite affecting nearly a third of the global population, the only way to 

definitively diagnose NASH and accurately stage fibrosis remains the liver biopsy, an 

invasive procedure that involves inserting a needle into the liver to extract tissue (4). It’s 

simply not feasible to biopsy hundreds of millions of people. Beyond the practical 

impossibility, biopsies carry risks, cause discomfort, and are expensive. 

But there’s another problem that doesn’t receive enough attention: biopsies themselves 

aren’t as reliable as we’d like to think. When different pathologists examine the same 

biopsy sample, they often disagree on the scores, a phenomenon called inter-observer 

variability (5). The liver is a large organ, and a biopsy needle only captures a tiny fragment, 

which may not represent the overall disease state (sampling error). For clinical trials 

testing new drugs, these limitations become critical roadblocks. How can we measure 

subtle improvements in liver health if our measurement tool is inherently inconsistent? 

ENTER ARTIFICIAL INTELLIGENCE: A GAME-CHANGING APPROACH 

This is where artificial intelligence steps in with genuine promise. AI, particularly through 

machine learning and deep learning techniques, can analyze massive amounts of data, 

medical images, electronic health records, lab results, and even molecular markers, to 

identify patterns invisible to the human eye (6). Early studies suggest that AI systems can 

match or even exceed human performance in detecting fatty liver disease, diagnosing 

NASH, and staging fibrosis (7). 

The appeal is obvious: it’s noninvasive, scalable, objective, and potentially more accurate 

than traditional methods. But as we’ll explore, the journey from promising research to 

routine clinical use is filled with both technical and societal challenges. 

AI’S ROLE IN MEDICAL IMAGING: SEEING WHAT HUMANS MISS 

The workhorse of AI in medical imaging is a technology called Convolutional Neural 

Networks (CNNs), essentially, computer programs that learn to recognize patterns in 

images the way a child learns to distinguish cats from dogs (8). These networks are trained 

on thousands of scans to find the signs of fat buildup and scarring in people with liver 

disease. 

Currently, MRI-PDFF (Magnetic Resonance Imaging–Proton Density Fat Fraction) is 

considered the best non-invasive way to measure liver fat in research settings (9). AI 

models are now being developed to work alongside or even enhance this technique. One 

study indicated that a deep learning model could predict liver fat content with reasonable 

accuracy, achieving a correlation coefficient (R²) of 0.63 with actual MRI-PDFF 
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measurements (10), not perfect, but a solid start. Where AI really shines is in detecting 

advanced liver scarring using CT scans. One deep learning system had an AUC (Area 

Under the Curve, a measure of diagnostic accuracy) of 0.97 for finding advanced fibrosis 

and 0.95 for cirrhosis (11). To put that in perspective, an AUC of 0.97 means the system 

correctly distinguishes between people with and without advanced fibrosis 97% of the time, 

better than many traditional blood tests. 

AI performs better at identifying severe disease (advanced fibrosis stages F3 and F4) than at 

distinguishing subtle differences in fat levels (12). This makes intuitive sense: severe 

scarring creates distinctive architectural changes in the liver, bridging fibrosis, nodules, 

and distorted blood vessels, that are easier for AI to recognize than the quantitative 

gradations of fat content. 

MAKING ULTRASOUND SMARTER AND MORE ACCESSIBLE 

Ultrasound remains the most widely available imaging tool worldwide, but it has 

limitations. Traditional ultrasound struggles with mild fatty liver and depends heavily on 

the operator’s skill. AI is changing both of these equations. Studies show that AI-assisted 

ultrasound can achieve an impressive AUC of 0.98 for detecting fatty liver disease (13). 

More granularly, deep learning algorithms have demonstrated AUCs of 0.85, 0.91, and 0.93 

for detecting mild, moderate, and severe steatosis, respectively (14). 

Perhaps most significantly, AI integration into elastography devices (which measure liver 

stiffness as a proxy for fibrosis) has already received regulatory approval. The FDA cleared 

the Velacur™ liver diagnostic tool, which uses AI to automatically identify liver tissue and 

assess the quality of shear wave measurements (15). This means that less experienced 

operators can now perform high-quality liver assessments, democratizing access to 

advanced diagnostics and making large-scale screening feasible. 

WHERE AI EXCELS (AND WHERE IT STRUGGLES) 

A closer look at performance data reveals an important pattern. AI systems are 

exceptionally good at ruling out advanced disease, their strength lies in identifying who 

doesn’t need a biopsy rather than providing fine-grained staging of early disease (16). For 

example, while AI achieves an AUC of 0.85 for basic steatosis detection (fat vs. no fat), the 

performance drops to 0.67 when trying to distinguish moderate from severe fat 

accumulation (17). This suggests the current clinical sweet spot for AI imaging is as a 

triage tool: quickly identifying high-risk patients who need further evaluation while 

confidently reassuring others that invasive procedures aren’t necessary. 

MINING ELECTRONIC HEALTH RECORDS: AI AS A CLINICAL 

DETECTIVE 

Beyond imaging, machine learning can extract diagnostic insights from the data already 

sitting in electronic health records (EHRs), demographics, vital signs, lab results, 

medication lists, and clinical notes. 

A landmark example is NASHmap, the first machine learning model specifically designed 

to predict NASH using biopsy-confirmed cases for training (18). Built using an advanced 

algorithm called XGBoost (Extreme Gradient Boosting), NASHmap analyzes 14 clinical 

features to predict the likelihood of NASH. In real-world validation using data from 

Optum’s massive EHR database, it achieved an AUC of 0.76, good, though not perfect. 

Importantly, a simplified version using just 5 features maintained strong performance 

(AUC of 0.74), making it practical for resource-limited settings (18). This kind of tool 



JHRR-1887 | 2025;5(10) | ISSN 2791-156X | © 2025 The Authors | CC BY 4.0 | Page 4 

doesn’t replace biopsies for definitive diagnosis, but it helps doctors prioritize, who should 

be referred to a specialist? Who needs more aggressive monitoring? In a world where 

healthcare resources are perpetually stretched thin, this kind of intelligent triage is 

invaluable. 

Perhaps even more valuable than diagnosing current disease is predicting who will 

progress. One study used XGBoost to analyze patients with simple fatty liver and predict 

who would develop NASH or significant fibrosis within four years (19). The results were 

impressive: an AUROC of 0.79 for progression to NASH and an even higher 0.87 for 

progression to fibrosis (19). 

Think about what the result means clinically. If we can identify high-risk patients years 

before they develop irreversible damage, we can intervene with lifestyle modifications, 

experimental therapies, or closer monitoring. This is the promise of precision medicine: 

treating the right patient, at the right time, with the right intervention. 

The power of this approach was demonstrated dramatically in a Veterans Affairs study that 

analyzed 4.2 million patient records (20). Using machine learning, researchers identified 

over 500,000 veterans (12% of the at-risk population) who likely had undiagnosed NASH. 

The top predictive factors? Age, obesity, and abnormal liver function tests, common, easily 

obtainable variables that, when combined intelligently by AI, become powerful diagnostic 

tools (20). Even when biopsies are performed, interpreting them remains problematic. The 

NASH-CRN scoring system, which pathologists use to grade steatosis, inflammation, 

ballooning, and fibrosis, is inherently subjective (21). Different pathologists looking at the 

same slide often assign different scores, a major problem when you’re trying to measure 

whether an experimental drug is working in a clinical trial. 

The issue runs deeper: the categorical nature of these scores (F0, F1, F2, F3, F4) means that 

small improvements might be missed entirely, or a patient teetering between stages could 

be scored differently by different observers (22). Pharmaceutical companies, investing 

hundreds of millions in drug development, find this inconsistency to be a significant 

challenge. 

AI-POWERED QUANTITATIVE HISTOLOGY 

Digital pathology powered by AI is addressing these limitations by providing objective, 

quantitative measurements rather than subjective categorical scores. A standout example is 

qFibrosis® by HistoIndex (23). This system uses second harmonic generation microscopy, a 

specialized technique that makes collagen fibers visible without chemical staining, to 

measure fibrosis on a continuous numerical scale. The reproducibility is exceptional: 89% 

agreement when the same sample is measured twice by the same system and 86% 

agreement between different systems (24). When pathologists use qFibrosis as a reference, 

their agreement jumps to 93%, nearly perfect concordance (25). 

Critically, qFibrosis has detected treatment effects in clinical trials that conventional 

scoring missed (26). This isn’t just an academic curiosity, it directly impacts drug 

development. Other tools like AIM-NASH and FibroNest™ offer similar quantitative 

approaches, with FibroNest even providing sub-staging within traditionally monolithic 

categories like F1 and F4 (27,28). 

ACCELERATING DRUG DEVELOPMENT 

The FDA has signaled that improvement in liver fibrosis can serve as a surrogate endpoint 

for accelerated approval of NASH drugs (29). AI-powered digital pathology tools make 
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measuring these improvements both more sensitive and more reliable, potentially 

shortening the timeline for getting effective therapies to patients. 

By standardizing how we measure disease, these tools also ensure consistency in 

determining who’s eligible for clinical trials and whether treatments are working, 

fundamental requirements for regulatory approval (29). 

THE LONG ROAD FROM LAB TO CLINIC 

Traditional medical device regulation was designed for static technologies, a stethoscope is 

a stethoscope, unchanged from the day it’s manufactured. But AI algorithms are different: 

they can learn and evolve, constantly improving as they encounter new data (30). This 

situation creates a regulatory conundrum. The FDA and European regulators are 

developing new frameworks for what they call Software as a Medical Device (SaMD), which 

emphasize continuous monitoring, documentation of changes, and, critically, explainability 

(31). Regulators want to understand why an AI makes a particular diagnosis, not just that 

it’s statistically accurate. This need is both reasonable and challenging, given the “black 

box” nature of many deep learning systems. 

Fortunately, there is positive news to report. Regulatory agencies are actively embracing 

advanced quantitative tools. The FDA’s focus on objective biomarkers and surrogate 

endpoints in NASH trials aligns well with what AI digital pathology offers (29). 

THE VALLEY OF DEATH: WHY EFFECTIVE AI TAKES YEARS TO 

REACH PATIENTS 

It takes a long time to move AI models from research to clinical practice, even when they 

work well in research settings. The U-Net architecture, a foundational deep learning 

approach, was published in 2015 but didn’t see significant adoption in research on fatty 

liver disease until 2019–2020 (32,33). That’s a four-to-five-year lag. 

Why so long? The bottleneck isn’t usually the technology itself, it’s the system. Healthcare 

workflows need to be redesigned. Doctors need to be trained. Data needs to be standardized. 

Hospitals need to invest in infrastructure. Insurance companies need to decide on 

reimbursement. None of this happens quickly (34). 

Data standardization deserves special mention. Deep learning is data-hungry, requiring 

enormous, high-quality datasets (35). A single hospital rarely has enough diverse cases to 

train a robust model. But sharing data between institutions raises privacy concerns, 

requires legal agreements, and faces technical hurdles because of incompatible data 

formats. Until we solve these foundational issues, many promising AI tools will remain 

research curiosities rather than clinical realities (35). 

ETHICAL MINEFIELDS: BIAS, TRANSPARENCY, AND TRUST 

Here’s an uncomfortable truth: AI systems inherit the biases present in their training data. 

If an algorithm is trained predominantly on data from Western, urban, well-resourced 

hospitals, it may perform poorly on patients from different ethnic backgrounds, rural 

settings, or resource-constrained environments (36). Liver disease manifestation varies by 

ethnicity and socioeconomic status. An AI that underperforms in African or Asian 

populations doesn’t just fail scientifically, it exacerbates existing health inequities (37). 

Imagine deploying a screening tool that misses disease in already underserved populations. 

The harm would compound over time. 
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The solution requires mandatory bias audits, diverse training datasets, and validation across 

different populations before deployment (38). This isn’t just ethically right, it’s practically 

necessary for tools meant to serve global populations. 

Deep learning models, especially complex CNNs, often function as “black boxes”, 

producing accurate predictions without explaining their reasoning (39). A doctor might be 

told, “This patient has a 78% probability of NASH,” but not why the AI reached that 

conclusion. This opacity creates multiple problems. Clinically, doctors are hesitant to trust 

recommendations they can’t verify or explain to patients. Legally, who’s liable when an 

unexplainable algorithm makes a mistake? Ethically, patients have a right to understand 

the basis of their medical decisions (40). 

Explainable AI (XAI) techniques like saliency mapping and Grad-CAM are helping by 

highlighting which parts of an image or which data features most influenced the AI’s 

decision (41). Imagine an AI showing you: “I diagnosed fibrosis because of these septal 

patterns here and this nodular architecture here.” That makes the technology transparent 

and teachable. 

Importantly, patients are often unaware that AI is being used in their care. Ethical practice 

demands disclosure, consent forms and patient information should state when algorithms 

contribute to diagnosis or treatment decisions (42). 

Healthcare data is a uniquely sensitive national resource. Misuse can violate privacy, erode 

public trust, and create institutional vulnerabilities (43). Policy frameworks must balance 

patient data rights with the societal benefits of AI-driven medical advances, a delicate 

equilibrium. 

Equally important is establishing clear accountability. When an AI makes an error, who’s 

responsible? Is it the algorithm developer? Is it the hospital that implemented the 

algorithm? Who was the doctor who relied on the algorithm? Clear chains of responsibility, 

meticulous documentation of system performance, and transparent version control are 

essential governance mechanisms (34). Without them, we risk creating systems where 

nobody feels accountable for failures. 

THE FUTURE: TOWARD TRULY PERSONALIZED LIVER CARE 

The next frontier is multimodal data fusion, seamlessly integrating clinical data, advanced 

imaging, and molecular information (44). Imagine an AI that considers not just your CT 

scan and lab results, but also genetic markers, immune cell profiles, and metabolic 

signatures. This holistic approach is the foundation of precision medicine. 

AI is already being applied to quantify immune cell infiltration in liver biopsies, 

automatically identifying and counting macrophages and T cells to understand the 

inflammatory environment (45). Elsewhere, machine learning analyzes liquid biopsies 

(blood samples containing circulating DNA and cellular fragments) to detect early signs of 

liver cancer (46). These technologies offer comprehensive risk assessment that was 

previously impossible. 

The highest value of AI may lie not in diagnosing current disease but in forecasting future 

trajectories. An AUROC of 0.87 for predicting progression to fibrosis four years in advance 

is genuinely remarkable (19). It means we can identify high-risk individuals while their 

livers are still relatively healthy and intervene aggressively. 

In drug development, AI can accelerate every stage, from identifying therapeutic targets to 

predicting which compounds will work to optimizing clinical trial design (47). AI makes it 
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possible to choose the best treatment for each person by looking at genes and molecular 

pathways that are specific to the disease (47). 

To realize its potential, AI research must transition from retrospective, single-center studies 

to prospective, multicenter validations across varied populations (48). We need institutional 

platforms that standardize data collection and sharing, making it easier to train and 

validate AI systems across different healthcare settings (48). 

The goal isn’t just publishable research, it’s deployable tools that improve patient outcomes 

in the real world. That requires collaboration between AI developers, clinicians, regulators, 

and patients themselves to ensure the technology meets actual needs rather than solving 

hypothetical problems. 

CONCLUSION: A PROMISING BUT CHALLENGING PATH FORWARD 

Artificial intelligence is genuinely transforming how we diagnose and manage fatty liver 

disease. Deep learning applied to CT imaging achieves near-perfect accuracy (AUC ≥0.95) 

in detecting advanced fibrosis, making it an excellent tool for ruling out severe disease 

(11). Machine learning algorithms analyzing EHR data, like NASHmap (AUC 0.76), enable 

population-level screening (18), while predictive models (AUROC 0.87 for fibrosis 

progression) allow early intervention (19). AI-powered digital pathology tools like qFibrosis 

are solving the reproducibility crisis in clinical trials, potentially accelerating drug 

development (23–26). 

Yet challenges remain formidable. Overcoming algorithmic bias requires diverse training 

data and rigorous validation across global populations (36–38). Addressing the “black box” 

problem demands greater transparency and explanation (39–41). Navigating complex 

regulatory landscapes for continuously learning systems requires new frameworks that 

balance innovation with safety (29,31). And translating research successes into routine 

clinical practice requires addressing systemic barriers around data standardization, 

workflow integration, and institutional acceptance (30,34,35). 

The trajectory is clear: we’re moving toward a future of precision hepatology where 

intelligent systems guide personalized, patient-centered care. But realizing this vision 

requires not just better algorithms but also thoughtful policy, ethical governance, and a 

commitment to equity in how these powerful tools are developed and deployed. 
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