From Microbes to Immunity: A Comprehensive Review of Microbiome Modulation
Main Article Content
Abstract
The host environment and the native microbial population, or microbiota, make up the microbiome, which is changing how medical professionals see pathogens in connection to human disease and health. The discovery that the majority of bacteria in human bodies perform ecosystem-critical tasks that benefit the entire microbial host system is perhaps the most fundamental development. The microbiome is the broad term for the diverse and abundant population of bacteria found in the gastrointestinal system. This ecosystem contains billions of microbial cells, the majority of which are essential to the preservation of human health. Nutrient consumption, immunology, digestion, and metabolism have all been related to the microbiome. Scientific research has recently established a correlation between alterations in the microbiome and the development of cancer, obesity, inflammatory pulmonary disease, and cardiovascular complications. Epithelial-intestinal microbiome modifications have a substantial impact on the development of diseases and human health. Numerous factors contribute to these changes, such as underlying medical issues and lifestyle decisions. Depending on where in the body it occurs, dysbiosis increases an organism's susceptibility to various threats. Due to the inherent diversity of the human microbiota, these bacteria carry out specific metabolic tasks and play unique roles in each anatomical location. It follows that knowledge of the microbial makeup and activities of the human microbiome in connection to health and disease is essential.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., ... & Kristiansen, K. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65.
Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313-323.
Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268-1273.
Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., ... & Marsland, B. J. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 20(2), 159-166.
Ivanov, I. I., Atarashi, K., Manel, N., Brodie, E. L., Shima, T., Karaoz, U., ... & Littman,
D. R. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 139(3), 485-498.
Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121-141.
Scher, J. U., Sczesnak, A., Longman, R. S., Segata, N., Ubeda, C., Bielski, C., ... & Abramson, S. B. (2013). Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife, 2, e01202.
Lloyd-Price, J., Arze, C., Ananthakrishnan, A. N., Schirmer, M., Avila-Pacheco, J., Poon,
T. W., ... & Vlamakis, H. (2019). Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, 569(7758), 655-662.
Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Björkstén, B., Engstrand, L., & Jenmalm, M. C. (2012). Low diversity of the gut microbiota in infants with atopic eczema. Journal of Allergy and Clinical Immunology, 129(2), 434-440.
Vrieze, A., Van Nood, E., Holleman, F., Salojärvi, J., Kootte, R. S., Bartelsman, J. F., ... & Nieuwdorp, M. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4), 913-916.
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., ... & Sanders, M.
E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514.
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J.,
... & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491- 502.
van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E. G., de Vos, W. M.,
... & Keller, J. J. (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. New England Journal of Medicine, 368(5), 407-415.
Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdova,
A. F., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105- 114.
Adelman, M. W. et al. The gut microbiome’s role in the development, maintenance, and outcomes of sepsis. Crit. Care 24, 278 (2020).
Hayashi, H., Sakamoto, M. & Benno, Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol. Immunol. 46, 535–548 (2002).
Tannock, G. W. et al. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66, 2578–DR2588 (2000).
Suau, A. et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65, 4799–4807 (1999).
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev.
Genomics Hum. Genet. 13, 151–170 (2012).
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).
Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).
Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).
Shono, Y. et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci. Transl. Med. 8, 339ra371 (2016).
Ganesh, B. P., Klopfleisch, R., Loh, G. & Blaut, M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella typhimurium-infected gnotobiotic mice. PLoS ONE 8, e74963 (2013).
Murphy, E. C., Mörgelin, M., Cooney, J. C. & Frick, I. M. Interaction of Bacteroides fragilis and Bacteroides thetaiotaomicron with the kallikrein-kinin system. Microbiology 157, 2094–2105 (2011).
Murthy, H. S. et al. Baseline gut microbiota composition is associated with major infections early after hematopoietic cell transplantation. Biol. Blood Marrow Transpl. 26, 2001-2010 (2020).
Legrand, R. et al. Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice-a new potential probiotic for appetite and body weight management. Int. J. Obes. 44, 1041–1051 (2020).
Pabst, O., & Slack, E. (2020). IgA and the intestinal microbiota: the importance of being specific. Mucosal immunology, 13(1), 12-21.
Franasiak, J. M., & Scott Jr, R. T. (2015). Introduction: microbiome in human reproduction. Fertility and sterility, 104(6), 1341-1343.
Dwyer, L. R., & Scharschmidt, T. C. (2022). Early life host-microbe interactions in skin. Cell Host & Microbe, 30(5), 684-695.
Di Luccia, B., Ahern, P. P., Griffin, N. W., Cheng, J., Guruge, J. L., Byrne, A. E., ... & Gordon, J. I. (2020). Combined prebiotic and microbial intervention improves oral cholera vaccination responses in a mouse model of childhood undernutrition. Cell host & microbe, 27(6), 899-908.
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteriacells in the body.PLoS Biol2016;14:e1002533.
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras Met al.Human gut microbiome viewed across age and geography.Nature2012;486:222–7.
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh Cet al.A human gutmicrobial gene catalog established by metagenomic sequencing.Nature2010;464:59– 65.
Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL, Martens ECet al.Regulated virulence controls the ability of a pathogen to compete with the gut microbiota.Science2012;336:1325–9.
Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication inhealth and disease. Front Physiol2011;2:94.
Forsythe P, Bienen stock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol2014;817:115–33.
Zhang H, Sparks JB, Karyala SV, Settlage R, Luo XM. Host adaptive immunity altersgut microbiota. ISME J2015;9:770–81.
Bengmark S. Gut microbiota, immune development and function.Pharmacol Res 2013;69:87–113.
Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan Ret al.Alterations of the human gut microbiome in multiple sclerosis. Nat Commun2016;28:12 015.
Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka Tet al.Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletionof species belonging to clostridia XIVa and IV clusters. PLoS One2015;10:e0137429.
Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner Cet al. Commensal microbiota and myelin auto antigen cooperate to trigger autoimmune demyelination.Nature2011;479:538–41.
Peollinger B, Krishna moorthy G, Berer K, Lassmann H, Beosl MR, Dunn Ret al.Spon- taneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells.J Exp Med2009;206:1303–16.
Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum Set al.Role of gut commensal microflora in the development of experimental autoimmune encephalo myelitis.J Immunol2009;183:6041–50