The Impact of Catechins, Capsaicin, and Gingerol in Managing Diabetes and Reducing the Risk of Atherosclerosis

Main Article Content

Muhammad Hamza
Ghulam Fatima
Rubab Sana
Saba Ghafar
Ali Hamza
Muhammad Tahir Habib
Hunza Fatima
Maryam Latif
Hafiza Iqra Akram

Abstract

Background: Diabetes mellitus and atherosclerosis are significant contributors to global morbidity and mortality, with their prevalence escalating alongside the increasing incidence of obesity and sedentary lifestyles. Traditional therapeutic approaches have had limited success in fully managing these conditions, prompting interest in natural compounds such as capsaicin and gingerol. These compounds have been identified for their potential therapeutic effects, including anti-inflammatory, antioxidant, and metabolic regulatory properties.


Objective: This review aims to critically assess the impact of capsaicin and gingerol on the management of diabetes and atherosclerosis, highlighting their mechanisms of action, therapeutic potential, and clinical applications.


Methods: A comprehensive literature search was conducted across multiple databases, including PubMed, Scopus, Web of Science, and Google Scholar, focusing on studies that evaluated the effects of capsaicin and gingerol on diabetes and atherosclerosis. The search strategy incorporated a combination of keywords and MeSH terms related to the compounds and diseases of interest. Studies were selected based on predefined inclusion and exclusion criteria, with data extraction and quality assessment conducted according to standardized protocols.


Results: The review synthesized evidence from both animal models and human clinical trials, demonstrating that capsaicin and gingerol exhibit significant potential in improving metabolic health, reducing inflammation, and mitigating the risk factors associated with diabetes and atherosclerosis. Capsaicin was found to enhance weight management and cardiovascular health through mechanisms involving the sympathetic nervous system and TRPV1 activation. Gingerol showed potent anti-inflammatory effects and improved glucose and lipid metabolism. However, the clinical applicability of these findings requires further investigation to determine optimal dosages and long-term effects.


Conclusion: Capsaicin and gingerol present promising natural therapeutic options for the management of diabetes and atherosclerosis, with potential benefits extending beyond traditional treatment modalities. Further clinical trials are necessary to fully elucidate their therapeutic potential and integrate them into clinical practice.

Article Details

How to Cite
Hamza, M., Fatima, G., Sana, R., Ghafar, S., Hamza, A., Habib, M. T., Fatima, H., Latif, M., & Akram, H. I. (2024). The Impact of Catechins, Capsaicin, and Gingerol in Managing Diabetes and Reducing the Risk of Atherosclerosis. Journal of Health and Rehabilitation Research, 4(1), 876–882. https://doi.org/10.61919/jhrr.v4i1.529
Section
Articles
Author Biographies

Muhammad Hamza, Government College University Faisalabad Pakistan.

Department of Nutritional Sciences.

Ghulam Fatima, Ghazi University Dera Ghazi Khan Pakistan.

Department of Zoology.

Saba Ghafar, Government College University Faisalabad Pakistan.

Department of Nutritional Sciences.

Ali Hamza, Muhammad Nawaz Sharif University of Agriculture Multan Pakistan.

Department of Food Science and Technology.

Muhammad Tahir Habib, Muhammad Nawaz Sharif University of Agriculture Multan Pakistan.

Department of Human Nutrition and Dietetics.

Hunza Fatima, University of Agriculture Faisalabad Pakistan.

Department of Home Economics.

Maryam Latif, Punjab University Lahore Pakistan.

Department of Home Economics.

Hafiza Iqra Akram, Government College University Faisalabad Pakistan.

Department of Nutritional Sciences.

References

Mukhtar, Y., Galalain, A., & Yunusa, U. (2020). A modern overview on diabetes mellitus: a chronic endocrine disorder. European Journal of Biology, 5(2), 1-14.

Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. I. D. F. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice, 138, 271-281.

La Sala, L., Prattichizzo, F., & Ceriello, A. (2019). The link between diabetes and atherosclerosis. European journal of preventive cardiology, 26(2_suppl), 15-24.

Singh, R. B., Mengi, S. A., Xu, Y. J., Arneja, A. S., & Dhalla, N. S. (2002). Pathogenesis of atherosclerosis: A multifactorial process. Experimental & Clinical Cardiology, 7(1), 40.

Borse, S. P., Chhipa, A. S., Sharma, V., Singh, D. P., & Nivsarkar, M. (2021). Management of type 2 diabetes: current strategies, unfocussed aspects, challenges, and alternatives. Medical Principles and Practice, 30(2), 109-121.

Raveendran, A. V., Chacko, E. C., & Pappachan, J. M. (2018). Non-pharmacological treatment options in the management of diabetes mellitus. European endocrinology, 14(2), 31.

Khursheed, R., Singh, S. K., Wadhwa, S., Kapoor, B., Gulati, M., Kumar, R., ... & Dua, K. (2019). Treatment strategies against diabetes: Success so far and challenges ahead. European journal of pharmacology, 862, 172625.

Choudhury, H., Pandey, M., Hua, C. K., Mun, C. S., Jing, J. K., Kong, L., ... & Kesharwani, P. (2018). An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of traditional and complementary medicine, 8(3), 361-376.

Cruz-Aldaco, K., Santos-Basurto, M. A., Belmares-Cerda, R. E., & Loredo-Treviño, A. (2024). Nutritional Profile of Fermented Food and Their Health Benefits. In The Role of Nutrition in Integral Health and Quality of Life (pp. 107-139). Apple Academic Press.

Sen S, Chakraborty R, De B. Diabetes mellitus in 21st century. Singapore:: Springer; 2016 Jul 25. Elsherief WM, Aljarrari AM. Serum Testosterone Levels and Statin Therapy in type two Diabetic and Hypertensive Libyan Male Subjects (Doctoral dissertation, University of Benghazi).

Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiological reviews. 2018 Aug 1.

Singh P, Jain P, Pandey R, Shukla SS. Phytotherapeutic review on diabetes Diabette fitoterapinin yeri.

Park, J. B., & Avolio, A. (2023). Arteriosclerosis and atherosclerosis assessment in clinical practice: Methods and significance. Pulse, 11(1), 1-8.

Jung YS, Shin MH, Kim IS, Kweon SS, Lee YH, Kim OJ, Kim YJ, Chung HJ, Kim OS. Relationship between periodontal disease and subclinical atherosclerosis: The Dong‐gu study. Journal of clinical periodontology. 2014 Mar;41(3):262-8.

Crowther MA. Pathogenesis of atherosclerosis. ASH Education Program Book. 2005 Jan 1;2005(1):436-41.

Anandh Babu PV, Liu D. Green tea catechins and cardiovascular health: an update. Current medicinal chemistry. 2008 Aug 1;15(18):1840-50.

Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P. Epigallocatechin gallate supplementation alleviates diabetes in rodents. The Journal of nutrition. 2006 Oct 1;136(10):2512-8.

Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. Journal of the American College of Nutrition. 2007 Aug 1;26(4):373S-88S.

Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. The Journal of nutrition. 2004 Dec 1;134(12):3431S-40S.

Schmidt M, Schmitz HJ, Baumgart A, Guedon D, Netsch MI, Kreuter MH, Schmidlin CB, Schrenk D. Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture. Food and Chemical Toxicology. 2005 Feb 1;43(2):307-14.

Nagao T, Meguro S, Hase T, Otsuka K, Komikado M, Tokimitsu I, Yamamoto T, Yamamoto K. A catechin‐rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity. 2009 Feb;17(2):310-7.

Hua C, Liao Y, Lin S, Tsai T, Huang C, Chou P. Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebocontrolled clinical trial. Alternative Medicine Review. 2011 Jun;16(2):157-63.

Ahmad RS, Butt MS, Sultan MT, Mushtaq Z, Ahmad S, Dewanjee S, De Feo V, Zia-Ul-Haq M. Preventive role of green tea catechins from obesity and related disorders especially hypercholesterolemia and hyperglycemia. Journal of translational medicine. 2015 Dec;13(1):1-9.

Hosoda K, Wang MF, Liao ML, Chuang CK, Iha M, Clevidence B, Yamamoto S. Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes care. 2003 Jun 1;26(6):1714-8.

Park BK, Lee EA, Kim HY, Lee JC, Kim KS, Jeong WH, Kim KY, Ku BJ, Rhee SD. Fatty liver and insulin resistance in the liver-specific knockout mice of mitogen inducible gene-6. Journal of diabetes research. 2016 Oct;2016.

Ghaffarzad A, Amani R, Sadaghiani MM, Darabi M, Cheraghian B. Correlation of serum lipoprotein ratios with insulin resistance in infertile women with polycystic ovarian syndrome: a case control study. International Journal of Fertility & Sterility. 2016 Apr;10(1):29.

Srikanth S, Deedwania P. Management of dyslipidemia in patients with hypertension, diabetes, and metabolic syndrome. Current hypertension reports. 2016 Oct;18:1-0.

Elam MB, Ginsberg HN, Lovato LC, Corson M, Largay J, Leiter LA, Lopez C, O’Connor PJ, Sweeney ME, Weiss D, Friedewald WT. Association of fenofibrate therapy with long-term cardiovascular risk in statin-treated patients with type 2 diabetes. JAMA cardiology. 2017 Apr 1;2(4):370-80.

Gutiérrez-Salmeán G, Meaney E, Lanaspa MA, Cicerchi C, Johnson RJ, Dugar S, Taub P, Ramírez-Sánchez I, Villarreal F, Schreiner G, Ceballos G. A randomized, placebo-controlled, double-blind study on the effects of (−)-epicatechin on the triglyceride/HDLc ratio and cardiometabolic profile of subjects with hypertriglyceridemia: Unique in vitro effects. International journal of cardiology. 2016 Nov 15;223:500-6.

Tinahones FJ, Rubio MA, Garrido-Sanchez L, Ruiz C, Gordillo E, Cabrerizo L, Cardona F. Green tea reduces LDL oxidability and improves vascular function. Journal of the American College of Nutrition. 2008 Apr 1;27(2):209-13.

Yin ST, Tang ML, Su L, Chen L, Hu P, Wang HL, Wang M, Ruan DY. Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology. 2008 Jul 10;249(1):45-54.

Samavat H, Newman AR, Wang R, Yuan JM, Wu AH, Kurzer MS. Effects of green tea catechin extract on serum lipids in postmenopausal women: a randomized, placebo-controlled clinical trial. The American journal of clinical nutrition. 2016 Dec 1;104(6):1671-82.

Koutelidakis AE, Rallidis L, Koniari K, Panagiotakos D, Komaitis M, Zampelas A, Anastasiou-Nana M, Kapsokefalou M. Effect of green tea on postprandial antioxidant capacity, serum lipids, C-reactive protein and glucose levels in patients with coronary artery disease. European journal of nutrition. 2014 Mar;53:479-86.

Zhang S, Ma X, Zhang L, Sun H, Liu X. Capsaicin reduces blood glucose by increasing insulin levels and glycogen content better than capsiate in streptozotocin-induced diabetic rats. Journal of agricultural and food chemistry. 2017 Mar 22;65(11):2323-30.

Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. The American journal of clinical nutrition. 2012 Apr 1;95(4):845-50.

Weerapan Khovidhunkit M. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J Med Assoc Thai. 2009;92(1):108-3.

Dömötör A, Szolcsányi J, Mózsik G. Capsaicin and glucose absorption and utilization in healthy human subjects. European journal of pharmacology. 2006 Mar 18;534(1-3):280-3.

Ahuja KD, Robertson IK, Geraghty DP, Ball MJ. Effects of chili consumption on postprandial glucose, insulin, and energy metabolism. The American journal of clinical nutrition. 2006 Jun 1;84(1):63-9.

YOSHIOKA M, LIM K, KIKUZATO S, KIYONAGA A, TANAKA H, SHINDO M, SUZUKI M. Effects of red-pepper diet on the energy metabolism in men. Journal of nutritional science and vitaminology. 1995;41(6):647-56.

Ives SJ, Park SY, Kwon OS, Gifford JR, Andtbacka RH, Hyngstrom JR, Richardson RS. TRPV1 channels in human skeletal muscle feed arteries: Implications for vascular function. Experimental physiology. 2017 Sep 1;102(9):1245-58.

Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ, Schrader M. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circulation research. 2007 Apr 13;100(7):1063-70.

Xiong S, Wang P, Ma L, Gao P, Gong L, Li L, Li Q, Sun F, Zhou X, He H, Chen J. Ameliorating endothelial mitochondrial dysfunction restores coronary function via transient receptor potential vanilloid 1–mediated protein kinase A/uncoupling protein 2 pathway. Hypertension. 2016 Feb;67(2):451-60.

Ojewole JA. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2006 Sep;20(9):764-72.

Jiang H, Xie Z, Koo HJ, McLaughlin SP, Timmermann BN, Gang DR. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry. 2006 Aug 1;67(15):1673-85.

Lu J, Guan S, Shen X, Qian W, Huang G, Deng X, Xie G. Immunosuppressive activity of 8-gingerol on immune responses in mice. Molecules. 2011 Mar 22;16(3):2636-45.

Kim SO, Kundu JK, Shin YK, Park JH, Cho MH, Kim TY, Surh YJ. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-κB in phorbol ester-stimulated mouse skin. Oncogene. 2005 Apr;24(15):2558-67.

Surh YJ, Park KK, Chun KS, Lee LJ, Lee E, Lee SS. Anti-tumor-promoting activities of selected pungent phenolic substances present in ginger. Journal of environmental pathology, toxicology and oncology: official organ of the International Society for Environmental Toxicology and Cancer. 1999 Jan 1;18(2):131-9.

Sekiya K, Ohtani A, Kusano S. Enhancement of insulin sensitivity in adipocytes by ginger. Biofactors. 2004 Jan 1;22(1-4):153-6.

Yu Y, Zick S, Li X, Zou P, Wright B, Sun D. Examination of the pharmacokinetics of active ingredients of ginger in humans. The AAPS journal. 2011 Sep;13:417-26.

Arablou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A, Djalali M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. International journal of food sciences and nutrition. 2014 Jun 1;65(4):515-20.

Mahluji S, Attari VE, Mobasseri M, Payahoo L, Ostadrahimi A, Golzari SE. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. International journal of food sciences and nutrition. 2013 Sep 1;64(6):682-6.

Bordia A, Verma SK, Srivastava KC. Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins, leukotrienes and essential fatty acids. 1997 May 1;56(5):379-84.

Mozaffari-Khosravi H, Talaei B, Jalali BA, Najarzadeh A, Mozayan MR. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Complementary therapies in medicine. 2014 Feb 1;22(1):9-16.

Setorki M, Nazari B, Asgary S, Azadbakht L, Rafieian-Kopaei M. Anti atherosclerotic effects of verjuice on hypocholesterolemic rabbits. Afr J Pharm Pharmacol. 2011 Aug 1;5(8):1038-45.

Shukla Y, Singh M. Cancer preventive properties of ginger: a brief review. Food and chemical toxicology. 2007 May 1;45(5):683-90.

Islam MS, Choi H. Comparative effects of dietary ginger (Zingiber officinale) and garlic (Allium sativum) investigated in a type 2 diabetes model of rats. Journal of medicinal food. 2008 Mar 1;11(1):152-9.

Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. British journal of nutrition. 2006 Oct;96(4):660-6.

Beattie JH, Nicol F, Gordon MJ, Reid MD, Cantlay L, Horgan GW, Kwun IS, Ahn JY, Ha TY. Ginger phytochemicals mitigate the obesogenic effects of a high‐fat diet in mice: A proteomic and biomarker network analysis. Molecular nutrition & food research. 2011 Sep;55(S2):S203-13.

Ramudu SK, Korivi M, Kesireddy N, Lee LC, Cheng IS, Kuo CH, Kesireddy SR. Nephro-protective effects of a ginger extract on cytosolic and mitochondrial enzymes against streptozotocin (STZ)-induced diabetic complications in rats. Chin J Physiol. 2011 Apr 30;54(2):79-86.

Alizadeh-Navaei R, Roozbeh F, Saravi M, Pouramir M, Jalali F, Moghadamnia AA. Investigation of the effect of ginger on the lipid levels. Saudi Med J. 2008;29(9):1280-4.

Rouhi-Boroujeni H, Gharipour M, Asadi-Samani M, Rouhi-Boroujeni H. The protective effects of ginger on the development of coronary atherosclerosis: An experimental animal study. Der Pharmacia Lettre. 2016;8(3):105-9.