Assessment of Acute Kidney Injury in Critically Ill Sars-Cov-2 Patients: A Narrative Review

Main Article Content

Wahid Ullah
Sher Bano
Hamzah Talal
Kaleem Ahmed
Talha Arshad
Sulman Khan
Aizaz Ajmal


Background: The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted acute kidney injury (AKI) as a significant complication among hospitalized patients, with varying incidences reported globally. The pathophysiology of COVID-19 related AKI encompasses direct viral damage, systemic inflammation, and the activation of the renin-angiotensin-aldosterone system (RAAS), among other factors. This complexity underscores the need for a detailed understanding of its epidemiology, clinical presentation, and management strategies to improve patient outcomes.

Objective: To synthesize current knowledge on the epidemiology, pathophysiology, clinical presentation, and management of AKI in COVID-19 patients, aiming to identify key factors influencing incidence rates, patient prognosis, and effective therapeutic approaches.

Methods: A comprehensive review of literature was conducted, examining studies from various geographical regions that reported on the incidence, risk factors, pathophysiological mechanisms, clinical presentation, and management of AKI in COVID-19 patients. Data on renal replacement therapy needs, mortality rates, and outcomes related to different management strategies were also collated.

Results: The incidence of AKI among COVID-19 patients varies significantly, with higher rates observed in critically ill patients. Key risk factors include older age, pre-existing comorbidities (e.g., hypertension, diabetes mellitus), and severe COVID-19 infection. The clinical presentation of AKI in the context of COVID-19 is characterized by abnormalities in urinary sediment, including albuminuria and hematuria. Management strategies largely align with those for AKI due to other causes, focusing on fluid and hemodynamic management, cautious use of nephrotoxic drugs, and consideration of RAAS inhibitors. The mortality rate among COVID-19 patients with AKI is notably high, particularly in those requiring renal replacement therapy.

Conclusion: AKI is a common and serious complication of COVID-19, associated with high morbidity and mortality rates. A multidisciplinary approach, incorporating current guidelines and tailored management strategies, is essential for the care of these patients. Further research is needed to fully understand the pathophysiology of COVID-19 related AKI and to identify effective treatments.

Article Details

How to Cite
Ullah, W., Bano, S., Talal, H., Ahmed, K., Arshad, T., Khan, S., & Ajmal, A. (2024). Assessment of Acute Kidney Injury in Critically Ill Sars-Cov-2 Patients: A Narrative Review. Journal of Health and Rehabilitation Research, 4(1), 1616–1624.
Author Biographies

Wahid Ullah, Riphah International University Islamabad Pakistan.

Department of Medical Laboratory Technology, Riphah International University, Islamabad, Pakistan.

Sher Bano, The University of Haripur-Haripur Pakistan.

Department of Medical Laboratory Technology, The University of Haripur, Haripur, Pakistan.

Hamzah Talal, Riphah International University Islamabad Pakistan.

Department of Medical Laboratory Technology, Riphah International University, Islamabad, Pakistan.

Kaleem Ahmed, Riphah International University Islamabad Pakistan.

Department of Medical Laboratory Technology, Riphah International University, Islamabad, Pakistan.

Talha Arshad, Riphah International University Islamabad Pakistan.

Department of Medical Laboratory Technology, Riphah International University, Islamabad, Pakistan.

Sulman Khan, Riphah International University Islamabad Pakistan.

Department of Medical Laboratory Technology, Riphah International University, Islamabad, Pakistan.

Aizaz Ajmal, Riphah International University Islamabad Pakistan.

Department of Medical Laboratory Technology, Riphah International University, Islamabad, Pakistan.


Selby NM, Forni LG, Laing C, Horne K, Evans R, Lucas B, et al. Covid-19 and acute kidney injury in hospital: summary of NICE guidelines. BMJ. 2020;369:m1963. doi: 10.1136/bmj.m1963.

Batlle D, Soler MJ, Sparks MA, Hiremath S, South AM, Welling PA, et al. Acute kidney injury in COVID-19: Emerging evidence of a distinct pathophysiology. J Am Soc Nephrol. 2020;31(7):1380-3. doi: 10.1681/ASN.2020040419.

Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98(1):209-18. doi: 10.1016/j.kint.2020.05.006.

Nadim MK, Forni LG, Mehta RL, Connor MJ, Liu KD, Ostermann M, et al. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol. 2020;16(12):747-64. doi: 10.1038/s41581-020-00356-5.

Tarragón B, Valdenebro M, Serrano MLM, Maroto A, Llópez-Carratalá MR, Ramos A, et al. Acute kidney failure in patients admitted due to COVID-19. Nefrologia (Engl Ed). 2021;41(1):34-40. doi: 10.1016/j.nefroe.2021.02.006.

See YP, Young BE, Ang LW, Ooi XY, Chan CP, Looi WL, et al. Risk factors for development of acute kidney injury in COVID-19 patients: a retrospective observational cohort study. Nephron. 2021;145(3):256-64. doi: 10.1159/000514064.

Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med. 2020;8(7):738-42. doi: 10.1016/S2213-2600(20)30229-0.

Ahmed A, Ebad CA, Stoneman S, Satti MM, Conlon PJ. Kidney injury in COVID-19. World J Nephrol. 2020;9(2):18-32. doi: 10.5527/wjn.v9.i2.18.

Chen YT, Shao S, Hsu CK, Wu IW, Hung MJ, Chen YC. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care. 2020;24(1):346. doi: 10.1186/s13054-020-03009-y.

Wang G, Li X, Chen H, Yan S, Li D, Li Y, et al. Coronavirus Disease 19 Infection Does Not Result in Acute Kidney Injury: An Analysis of 116 Hospitalized Patients from Wuhan, China. Am J Nephrol. 2020;51(5):343-8. doi: 10.1159/000507471.

Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020;323(15):1488. doi: 10.1001/jama.2020.3204.

Wang JJ, Edin ML, Zeldin DC, Li C, Wang DW, Chen C. Good or bad: Application of RAAS inhibitors in COVID-19 patients with cardiovascular comorbidities. Pharmacol Ther. 2020;215:107628. doi: 10.1016/j.pharmthera.2020.107628.

Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020;323(16):1612. doi: 10.1001/jama.2020.4326.

Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323(14):1406. doi: 10.1001/jama.2020.2565.

Wei G, Chen C, Chen AL, Sun XC, Guo GY, Xu Z, et al. Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial. J Thorac Dis. 2020;12(6):3448–52. doi: 10.21037/jtd-2020-057.

Pan L, Mu M, Yang PC, Sun Y, Wang R, Yan JH, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115(5):766-73. doi: 10.14309/ajg.0000000000000620.

Wei WE, Li Z, Chiew CJ, Yong SEF, Toh MPHS, Lee VJ. Presymptomatic transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(14):411-5. doi: 10.15585/mmwr.mm6914e1.

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934. doi: 10.1001/jamainternmed.2020.0994.

Zheng S, Fan JG, Yu F, Feng B, Liu B, Zou Q, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020;m1443. doi: 10.1136/bmj.m1443.

Dinesh GH, Nguyen DD, Ravindran B, Chang SW, Vo DN, Bach Q, et al. Simultaneous biohydrogen (H2) and bioplastic (poly-β-hydroxybutyrate-PHB) productions under dark, photo, and subsequent dark and photo fermentation utilizing various wastes. Int J Hydrogen Energy. 2020;45(10):5840-53. doi: 10.1016/j.ijhydene.2019.09.036.

Chen W, Lan Y, Yuan XZ, Deng X, Liu Y, Cai X, et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerg Microbes Infect. 2020;9(1):469-73. doi: 10.1080/22221751.2020.1732837.

Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829-38. doi: 10.1016/j.kint.2020.03.005.

Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical characteristics of COVID-19 in New York City. N Engl J Med. 2020;382(24):2372-4. doi: 10.1056/NEJMc2010419.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.

Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574. doi: 10.1001/jama.2020.5394.

Panitchote A, Mehkri O, Hastings A, Hanane T, Demirjian S, Torbic H, et al. Factors associated with acute kidney injury in acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):74. doi: 10.1186/s13613-019-0552-5.

Grasselli G, Artigas A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy. JAMA. 2020;323(16):1545. doi: 10.1001/jama.2020.4031.

Joannidis M, Forni LG, Klein SJ, Honoré PM, Kashani K, Ostermann M, et al. Lung –kidney interactions in critically ill patients: consensus report of the Acute Disease Quality Initiative (ADQI) 21 Workgroup. Intensive Care Med. 2020;46(4):654-72. doi: 10.1007/s00134-019-05869-7.

Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345(8):568-73. doi: 10.1056/NEJMoa010043.

Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6):1099-102. doi: 10.1007/s00134-020-06033-2.

Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med. 2020;46(5):837-40. doi: 10.1007/s00134-020-05979-7.

Jo A, Huet C, Naguib HE. Template-assisted self-assembly of conductive polymer electrodes for ionic electroactive polymers. Front Bioeng Biotechnol. 2020;8:837. doi: 10.3389/fbioe.2020.00837.

Mizuiri S. ACE and ACE2 in kidney disease. World J Nephrol. 2015;4(1):74. doi: 10.5527/wjn.v4.i1.74.

Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z, et al. Patients with cancer appear more vulnerable to SARS-CoV-2: A multicenter study during the COVID-19 outbreak. Cancer Discov. 2020;10(6):783-91. doi: 10.1158/2159-8290.CD-20-0422.

Deshotels MR, Xia H, Sriramula S, Lazartigues E, Filipeanu CM. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor–dependent mechanism. Hypertension. 2014;64(6):1368-75. doi: 10.1161/HYPERTENSIONAHA.114.03743.

Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci. 2020;41(6):363-82. doi: 10.1016/

Ferrario CM, Jessup JA, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605-10. doi: 10.1161/CIRCULATIONAHA.104.510461.

Zhang P, Zhu L, Cai J, Lei F, Qin JJ, Xie J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020;126(12):1671-81. doi: 10.1161/CIRCRESAHA.120.317134.

Vuille-dit-Bille RN, Camargo SMR, Emmenegger L, Sasse T, Kummer E, Jando J, et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids. 2014;47(4):693-705. doi: 10.1007/s00726-014-1889-6.

Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214-7. doi: 10.1016/j.ijid.2020.01.050.

Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin–angiotensin–aldosterone system blockers and the risk of COVID-19. N Engl J Med. 2020;382(25):2431-40. doi: 10.1056/NEJMoa2006923.

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X.

Cunningham PN, Quigg RJ. Contrasting roles of complement activation and its regulation in membranous nephropathy. J Am Soc Nephrol. 2005;16(5):1214-22. doi: 10.1681/ASN.2005010096.

Chu C, Lee WH, Hsu PC, Lee MK, Lee HH, Chiu CA, et al. Association of increased epicardial adipose tissue thickness with adverse cardiovascular outcomes in patients with atrial fibrillation. Medicine (Baltimore). 2016;95(11):e2874. doi: 10.1097/MD.0000000000002874.

Nechemia-Arbely Y, Barkan D, Pizov G, Shriki A, Rose-John S, Galun E, et al. IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol. 2008;19(6):1106-15. doi: 10.1681/ASN.2007070744.

Desai TR, Leeper NJ, Hynes KL, Gewertz BL. Interleukin-6 causes endothelial barrier dysfunction via the protein kinase C pathway. J Surg Res. 2002;104(2):118-23. doi: 10.1006/jsre.2002.6415.

Sinha P, Matthay MA, Calfee CS. Is a “Cytokine storm” relevant to COVID-19? JAMA Intern Med. 2020;180(9):1152. doi: 10.1001/jamainternmed.2020.3313.

Fedson DS, Opal SM, Rordam OM. Hiding in plain sight: An approach to treating patients with severe COVID-19 infection. mBio. 2020;11(2):e00398-20. doi: 10.1128/mBio.00398-20.

Maude SL, Frey NV, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507-17. doi: 10.1056/NEJMoa1407222.

Cao M, Zhang D, Wang Y, Lu Y, Zhu X, Li Y, et al. Clinical features of patients infected with the 2019 novel coronavirus (COVID-19) in Shanghai, China. medRxiv. 2020. doi: 10.1101/2020.03.04.20030395.

Martínez-Rojas MÁ, Vega-Vega O, Bobadilla NA. Is the kidney a target of SARS-CoV-2? Am J Physiol Renal Physiol. 2020;318(6):F1454-62. doi: 10.1152/ajprenal.00160.2020.

Kissling S, Rotman S, Gerber C, Halfon M, Lamoth F, Comte D, et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int. 2020;98(1):228-31. doi: 10.1016/j.kint.2020.04.006.

Larsen CP, Bourne TD, Wilson JD, Saqqa O, Sharshir MA. Collapsing glomerulopathy in a patient with COVID-19. Kidney Int Rep. 2020;5(6):935-9. doi: 10.1016/j.ekir.2020.04.002.

Nasr SH, Kopp JB. COVID-19–associated collapsing glomerulopathy: An emerging entity. Kidney Int Rep. 2020;5(6):759-61. doi: 10.1016/j.ekir.2020.04.030.

Nguyen M, Maynard SE, Kimmel PL. Misapplications of commonly used kidney equations. Clin J Am Soc Nephrol. 2009;4(3):528-34. doi: 10.2215/CJN.05731108.

Chen D, Li X, Song Q, Hu C, Su F, Dai J, et al. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19). medRxiv. 2020. doi: 10.1101/2020.02.27.20028530.

Diao B, Wang C, Wang R, Feng Z, Tan Y, Wang H, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. medRxiv. 2020. doi: 10.1101/2020.03.04.20031120.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061. doi: 10.1001/jama.2020.1585.

Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol. 2020;31(6):1157-65. doi: 10.1681/ASN.2020030276.

Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052. doi: 10.1001/jama.2020.6775.

World Health Organization. Weekly epidemiological update on COVID-19 - 1 September 2023 [Internet]. 2021 Jun 15 [cited 2024 Mar 9]. Available from:

Gupta S, Hayek SS, Wang W, Chan L, Mathews KS, Melamed ML, et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern Med. 2020;180(11):1436. doi: 10.1001/jamainternmed.2020.3596.

Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–70. doi: 10.1016/s0140-6736(20)31189-2.

Su S, Chaves SS, Pérez A, D’Mello T, Kirley PD, Yousey-Hindes K, et al. Comparing clinical characteristics between hospitalized adults with laboratory-confirmed influenza A and B virus infection. Clin Infect Dis. 2014;59(2):252–5. doi: 10.1093/cid/ciu269.

Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol. 2017;8:405. doi: 10.3389/fimmu.2017.00405.

Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography. 2007;30(5):609–28. doi: 10.1111/j.2007.0906-7590.05171.x.

Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590–2. doi: 10.1056/nejmc2011400.

Braun F, Lütgehetmann M, Pfefferle S, Wong MN, Carsten A, Lindenmeyer MT, et al. SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet. 2020;396(10251):597–8. doi: 10.1016/s0140-6736(20)31759-1.

Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–27. doi: 10.1016/j.kint.2020.04.003.

Milloy MJ, Wood E. Withdrawal from methadone in US prisons: cruel and unusual? Lancet. 2015;386(9991):316–8. doi: 10.1016/s0140-6736(15)60073-3.

Jin M, Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 2020;26(7):1618–20. doi: 10.3201/eid2607.200445.

McCullough JW, Renner B, Thurman JM. The role of the complement system in acute kidney injury. Semin Nephrol. 2013;33(6):543–56. doi: 10.1016/j.semnephrol.2013.08.005.

Lerolle N, Nochy D, Guérot E, Bruneval P, Fagon JY, Diehl JL, et al. Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med. 2009;36(3):471–8. doi: 10.1007/s00134-009-1723-x.

Douglas IS, Alapat PM, Corl KA, Exline MC, Forni LG, Holder AL, et al. Fluid response evaluation in sepsis hypotension and shock. Chest. 2020;158(4):1431–45. doi: 10.1016/j.chest.2020.04.025.

Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829–39. doi: 10.1056/NEJMoa1711584.

Goldstein SL, Mottes T, Simpson K, Barclay C, Muething SE, Haslam DB, et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int. 2016;90(1):212–21. doi: 10.1016/j.kint.2016.03.031.

Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19). JAMA. 2020. doi: 10.1001/jama.2020.6019.

Li T, Zhang Y, Gong C, Wang J, Liu B, Shi L, et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr. 2020;74(6):871–5. doi: 10.1038/s41430-020-0642-3.

Arkin N, Krishnan K, Chang MG, Bittner EA. Nutrition in critically ill patients with COVID-19: Challenges and special considerations. Clin Nutr. 2020;39(7):2327–8. doi: 10.1016/j.clnu.2020.05.007.