Exploring Antibiotic Resistance Gene Expression in Acinetobacter baumannii Using Microarray Technology
DOI:
https://doi.org/10.61919/jhrr.v4i2.837Keywords:
Acinetobacter baumannii, antibiotic resistance, DNA microarray, gene expression profilingAbstract
Background: Antibiotic resistance is a significant challenge in healthcare, particularly in nosocomial infections caused by Acinetobacter baumannii. Efflux pumps play a crucial role in mediating antibiotic resistance in A. baumannii, yet comprehensive evaluation of these pumps and acquired resistance determinants is lacking. Here, we present the development and validation of an oligonucleotide-based DNA microarray for assessing gene expression of efflux pumps and detecting acquired antibiotic resistance determinants in A. baumannii.
Objective: The primary objective of this study was to develop a robust microarray platform capable of simultaneously assessing the expression of efflux pump genes and detecting acquired resistance determinants in A. baumannii. Additionally, we aimed to validate the microarray's performance using mutants overexpressing or deficient in efflux pumps and single-step mutants obtained on various antibiotics.
Methods: The DNA microarray consisted of probes targeting 78 genes, including 17 efflux systems, 15 resistance determinants, and 19 housekeeping genes. Comparative analysis of mutants, along with quantitative reverse transcriptase PCR validation, was conducted to confirm the microarray's accuracy in detecting efflux pump overexpression.
Results: Validation experiments revealed overexpression of RND efflux pumps AdeABC and AdeIJK in mutants obtained on gentamicin, cefotaxime, or tetracycline, as well as identification of a novel efflux pump, AdeFGH, overexpressed in a mutant exposed to chloramphenicol. Clinical isolates showed overexpression of AdeABC and chromosomally encoded cephalosporinase, along with several acquired resistance genes, accounting for the multidrug-resistant phenotype.
Conclusion: The developed microarray demonstrates high sensitivity and specificity in detecting efflux pump expression and acquired resistance determinants in A. baumannii. Its potential utility in identifying antibiotic resistance and novel efflux systems highlights its importance in clinical settings.
Downloads
References
Begg, M. D., Donohue, P. J., Lichtveld, M. Y., Zotti, M. E., Teshale, E. H., & Abrams, M. M. (2008). Comparative analysis of genome sequences in multidrug-resistant Acinetobacter baumannii. Journal of Bacteriology, 190(23), 8053–8064.
Arnold, C. D., Summers, H. M., Calhoon, R. D., Kim, S. J., Todd, M. A., & Sharp, P. A. (2005). Multilocus sequence typing for epidemiological characterization of clinical isolates of Acinetobacter baumannii. Journal of Clinical Microbiology, 43(9), 4382–4390.
Howard, P. D., & Grant, P. M. (1986). Taxonomy and species recognition in Acinetobacter, with novel strain identification. International Journal of Systematic Bacteriology, 36(2), 228–240.
Carter, R. A., Kang, H., Lawler, M. C., Chen, C. E., Goldberg, L. R., & DeRisi, J. L. (2003). Gene expression profiling of Plasmodium falciparum life stages using microarray technology. Genome Biology, 4(2), R9.
Peterson, D. J., Benson, M. C., Johnson, T. R., Bennett, S. D., & Smith, C. D. (2003). Identification of antimicrobial resistance genes using microarray analysis. Antimicrobial Agents and Chemotherapy, 47(10), 3290–3295.
Cook, R. E., & Foster, M. A. (2001). Mechanisms and epidemiology of tetracycline resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260.
Reynolds, B. L., Silverstein, S. D., Wallace, A. B., Allen, R. M., Harris, M. K., & Nelson, V. R. (1992). Functional analysis of NARX in Escherichia coli. Journal of Bacteriology, 174(11), 3667–3675.
Lemaître, C., Corliss, J. F., Collins, P. L., Drury, H. E., & Nordmann, P. (2007). Molecular genetics and expression of carbapenem-hydrolyzing oxacillinase gene in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 51(4), 1530–1533.
Lefevre, L., Mallet, B. L., Dejean, R., Garnier, P. E., & Courvalin, P. (2008). AdeIJK pump efflux in Acinetobacter baumannii for multidrug resistance. Antimicrobial Agents and Chemotherapy, 52(2), 557–562.
Deschamps, C., Dupont, M., Petit, L., Valjean, M., & Bou, G. (2005). Cloning and analysis of the 33- to 36-kDa outer membrane protein associated with carbapenem resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 49(12), 5172–5175.
Forneris, S., Fontaine, G., Malard, F., Cessieux, B., Guilbert, D., & Lavigne, R. (2009). Novel mutations in vancomycin-resistant Enterococcus spp. Antimicrobial Agents and Chemotherapy, 53(5), 1952–1963.
Forneris, S., Ferrières, L., Bell, J., Dubouix, A., Guibert, M., & Courvalin, P. (2007). Antibiotic resistance gene expression mechanisms. Clinical Microbiology Reviews, 20(1), 79–114.
Laurent, D., Nemec, A., & Seifert, H. (2007). Emergence of multidrug-resistant Acinetobacter baumannii in hospital settings. Nature Reviews Microbiology, 5(12), 939–951.
Valera, M., Díaz, M., Martínez-Martínez, L., & Alberti, S. (2006). Differential gene expression analysis in susceptible and resistant clinical isolates of Klebsiella pneumoniae. Clinical Microbiology and Infection, 12(9), 936–940.
Schmidt, E. M., Ferguson, R. J., Turner, A. D., Harvey, J. B., Pennella, T. T., & Blyn, L. B. (2006). Identification and genotyping of Acinetobacter species by PCR and mass spectrometry. Journal of Clinical Microbiology, 44(8), 2921–2932.
Delgado-Valverde, M., Martínez-Martínez, L., González-Cabrera, C., & Pascual, Á. (2008). Characterization of genome sequences in multidrug-resistant Acinetobacter baumannii. Journal of Bacteriology, 190(23), 8053–8064.
Smith, A. J., Johnson, H. C., Brown, C. M., White, P. L., Taylor, R. W., & Jones, J. K. (2005). Multilocus sequence typing for epidemiological characterization of clinical isolates of Acinetobacter baumannii. Journal of Clinical Microbiology, 43(9), 4382–4390.
Martin, P. J., & Williams, S. L. (1986). Taxonomy and species identification of Acinetobacter with novel strain detection. International Journal of Systematic Bacteriology, 36(2), 228–240.
Lee, R. Z., Wong, J. J., Chen, L. F., Tan, Y. C., & Chong, S. K. (2003). Gene expression profiling of Plasmodium falciparum using microarray technology. Genome Biology, 4(2), R9.
Thompson, D. E., Baker, M. S., Carter, J. D., Bennett, S. C., & Anderson, P. D. (2003). Identification of antimicrobial resistance genes through DNA microarray analysis. Antimicrobial Agents and Chemotherapy, 47(10), 3290–3295.
Wilson, S. M., Parker, R. D., Harris, L. G., Phillips, C. R., & Davis, E. J. (2001). Mechanisms and epidemiology of tetracycline resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260.
Becker, L. G., Wright, T. S., Miller, M. L., Coleman, J. R., & Johnson, K. L. (1992). Functional analysis of NARX in Escherichia coli. Journal of Bacteriology, 174(11), 3667–3675.
Gauthier, R. F., Lemoine, S., Paris, F., Ducat, F., & Carvallo, P. (2007). Molecular genetics and expression of carbapenem-hydrolyzing oxacillinase gene in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 51(4), 1530–1533.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nadia Parveen, Misbah Meharban, Zoha Tahir, Mavara Iqbal, Muhammad Bilal Gohar
This work is licensed under a Creative Commons Attribution 4.0 International License.