Detection of Early Gastric Cancer and Lesion Segmentation Based on Deep Learning

Main Article Content

Rahid Gul
Hania Akbar
Sadaqat Ali
Muhammad Amjad Khan
Noor Sardar
Intikhab Alam
Nusrum Iqbal
Younas Ahmad


Background: Early detection and precise identification of gastric cancer tumors significantly enhance patient outcomes. Conventional methods often rely on manual interpretation of endoscopic images, which can be time-consuming and subjective. Recent advancements in deep learning offer promising alternatives for automating and improving these diagnostic processes.

Objective: The primary objective of this study is to explore the effectiveness of a deep learning model in detecting early gastric cancer and segmenting lesions from endoscopic images.

Methods: This retrospective study was conducted at Khalifa Gul Nawaz Teaching Hospital /BMC Bannu, from December 2021 to November 2022. Medical records and endoscopic images from 180 patients with suspected or confirmed gastric lesions were analyzed. Images were diversified in terms of lesion types and characteristics. Preprocessing steps including standardization and enhancement techniques were applied to improve image quality for analysis.

Results: The deep learning model achieved an accuracy of 90% in identifying gastric cancer lesions, with a sensitivity of 85% and specificity of 92%. The area under the curve (AUC-ROC) was calculated to be 0.61, indicating a good discriminative performance of the model.

Conclusion: The deep learning model demonstrated significant potential for enhancing the detection and segmentation of early gastric cancer from endoscopic images, providing a valuable tool for gastroenterologists in the early diagnosis and treatment planning.

Article Details

How to Cite
Gul, R., Hania Akbar, Ali, S., Khan, M. A., Sardar, N., Alam, I., Iqbal, N., & Ahmad, Y. (2024). Detection of Early Gastric Cancer and Lesion Segmentation Based on Deep Learning. Journal of Health and Rehabilitation Research, 4(2), 944–948.
Author Biographies

Rahid Gul, Khalifa Gul Nawaz Teaching Hospital Bannu Pakistan.

Assistant Professor, Gastroenterology Department, Khalifa Gul Nawaz Teaching Hospital Bannu, Pakistan.

Hania Akbar, DHQ Hospital Abbottabad

MBBS, FCPS Gastroenterology, Consultant Gastroenterologist And Hepatologist DHQ Hospital Abbottabad

Sadaqat Ali, Health Department KP Nowshera Pakistan.

Internal Medicine Specialist, RHC Nowshera, Health Department KP Nowshera, Pakistan.

Muhammad Amjad Khan, Benazir Bhutto Shaheed Teaching Hospital Abbottabad Pakistan.

Consultant Gastroenterologist, Medicine Department, Benazir Bhutto Shaheed Teaching Hospital Abbottabad, Pakistan.

Noor Sardar, DHQ Teaching Hospital Dera Ismail Khan Pakistan.

WMO Internal Medicine Department, MTI, DHQ Teaching Hospital Dera Ismail Khan, Pakistan.

Intikhab Alam, Jinnah Medical College and Teaching Hospital Peshawar Pakistan.

Assistant Professor Gastroenterology Jinnah Medical College and Teaching Hospital Peshawar, Pakistan.

Nusrum Iqbal, MD Health Center Lahore Pakistan.

Head of Department, Internal Medicine Department, MD Health Center Lahore, Pakistan.

Younas Ahmad, Jinnah Medical College and Teaching Hospital Peshawar Pakistan.

Assistant Professor Gastroenterology, Jinnah Medical College and Teaching Hospital Peshawar, Pakistan.


Zhang K, Wang H, Cheng Y, Liu H, Gong Q, Zeng Q, Zhang T, Wei G, Wei Z, Chen D. Early gastric cancer detection and lesion segmentation based on deep learning and gastroscopic images. Sci Rep. 2024 Apr 3;14(1):7847. doi: 10.1038/s41598-024-58361-8. Erratum in: Sci Rep. 2024 Apr 19;14(1):9025. PMID: 38570595; PMCID: PMC10991264.

Sumiyama K. Past and current trends in endoscopic diagnosis for early stage gastric cancer in Japan. Gastric Cancer. 2017;20(Suppl 1):20–27. doi: 10.1007/s10120-016-0659-4.

Jin Z, Gan T, Wang P, Fu Z, Zhang C, Yan Q, et al. Deep learning for gastroscopic images: Computer-aided techniques for clinicians. Biomed. Eng. Online. 2022;21(1):12. doi: 10.1186/s12938-022-00979-8.

Ishioka M, Hirasawa T, Tada T. Detecting gastric cancer from video images using convolutional neural networks. Digest. Endosc. 2018;31(2):13306.

Ueyama H, Kato Y, Akazawa Y, Yatagai N, Komori H, Takeda T, et al. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. J. Gastroen. Hepatol. 2021;36(2):482–489. doi: 10.1111/jgh.15190.

Oura H, Matsumura T, Fujie M, Ishikawa T, Nagashima A, Shiratori W, et al. Development and evaluation of a double-check support system using artificial intelligence in endoscopic screening for gastric cancer. Gastric Cancer. 2022;25(2):392–400. doi: 10.1007/s10120-021-01256-8.

He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. IEEE Trans. Pattern. Anal. 2020;42(2):386–397. doi: 10.1109/TPAMI.2018.2844175.

Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-excitation networks. IEEE Trans. Pattern. Anal. 2020;42(8):2011–2023. doi: 10.1109/TPAMI.2019.2913372.

Almahairi A, Ballas N, Cooijmans T, Zheng Y, Larochelle H, Courville A. Dynamic capacity networks. Int. Conf. Mach. Learn. 2015;2015:2549–2558.

Pogorelov K, Randel K, Griwodz C, Eskeland S, de Lange T, Johansen D, et al. KVASIR: A multi-class image dataset for computer aided gastrointestinal disease detection. ACM. 2017;2017:164–169.

Wang S, Chen Y, Yi S, Chao G. Frobenius norm-regularized robust graph learning for multi-view subspace clustering. Appl. Intell. 2022;52(13):14935–14948. doi: 10.1007/s10489-022-03816-6.

Chao G, Wang S, Yang S, Li C, Chu D. Incomplete multi-view clustering with multiple imputation and ensemble clustering. Appl. Intell. 2022;52(13):14811–14821. doi: 10.1007/s10489-021-02978-z.

Shibata, T., Teramoto, A., Yamada, H., Ohmiya, N., Saito, K., & Fujita, H. (2019). Automated Detection and Segmentation of Early Gastric Cancer from Endoscopic Images Using Mask R-CNN. Applied Sciences, 10(11), 3842.

Zhou, X.; Takayama, R.; Wang, S.; Hara, T.; Fujita, H. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med. Phys. 2017, 44, 5221–5233.

Sakai, Y.; Takemoto, S.; Hori, K.; Nishimura, M.; Ikematsu, H.; Yano, T.; Yokota, H. Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network. In Proceedings of the 40th International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 17–21 July 2018; pp. 4138–4141.

Yoon, H.J.; Kim, S.; Kim, J.-H.; Keum, J.-S.; Oh, S.-I.; Jo, J.; Chun, J.; Youn, Y.H.; Park, H.; Kwon, I.G.; et al. A lesion-based convolutional neural network improves endoscopic detection and depth prediction of early gastric cancer. J. Clin. Med. 2019, 8, 1310.

Teramoto, A.; Yamada, A.; Kiriyama, Y.; Tsukamoto, T.; Yan, K.; Zhang, L.; Imaizumi, K.; Saito, K.; Fujita, H. Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network. Inform. Med. Unlocked 2019, 16, 100205

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

Shibata T, Teramoto A, Yamada H, Ohmiya N, Saito K, Fujita H. Automated detection and segmentation of early gastric cancer from endoscopic images using mask R-CNN. Applied Sciences. 2020 May 31;10(11):3842.

Siripoppohn V, Pittayanon R, Tiankanon K, Faknak N, Sanpavat A, Klaikaew N, Vateekul P, Rerknimitr R. Real-time semantic segmentation of gastric intestinal metaplasia using a deep learning approach. Clinical Endoscopy. 2022 May;55(3):390.