Sonographic Characteristics of Enlarged Axillary Lymph Node in Breast Cancer
Main Article Content
Abstract
Background: Breast cancer, the most prevalent cancer in women globally, presents unique challenges in Pakistan, particularly due to the younger average age of diagnosis compared to Western countries. Accurate assessment of axillary lymph nodes using ultrasound (US) is essential for effective breast cancer staging and prognosis.
Objective: This study aimed to evaluate the sonographic characteristics of axillary lymph nodes in breast cancer patients in Pakistan and to assess the diagnostic efficacy of ultrasound in differentiating between benign and malignant lymph nodes.
Methods: Conducted at Shalamar Hospital, Lahore, this cross-sectional study spanned four months and included 150 breast cancer patients aged 45-70 years, selected through convenient sampling. Ultrasound examinations were performed using a GE Ultrasound Machine Evolsion E7 with a linear probe (7.5-12Hz). Key sonographic parameters, including the shape, size (length and width), and echogenicity of lymph nodes, were meticulously recorded and analyzed by using SPSS 24.0.
Results: The average length and width of lymph nodes were 5.86 mm (SD = 1.35) and 3.90 mm (SD = 0.77), respectively. A significant proportion of lymph nodes (74.2%) presented with a round shape in patients experiencing pain, and a predominance of hyperechoic nodes was noted, diverging from established literature that often associates hypoechoic nodes with malignancy. Additionally, an irregular shape was identified as a potential predictive marker for axillary lymph node metastasis.
Conclusion: This study highlights the efficacy of axillary sonography in diagnosing axillary metastasis in breast cancer, showing moderate sensitivity and substantial specificity. It also identifies a notable association between older age and the likelihood of axillary lymph node metastasis, especially in women in their forties.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Cowin P, Rowlands TM, Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol. 2005;17(5):499-508. doi:10.1016/j.ceb.2005.08.014
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66. doi:10.1038/s41572-019-0111-2
Waks AG, Winer EP. Breast Cancer Treatment: A Review. JAMA. 2019;321(3):288-300. doi:10.1001/jama.2018.19323
Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13(11):1387-1397.doi:10.7150/ijbs.21635
Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncol. 2001;2(3):133-140. doi:10.1016/S1470-2045(00)00254-0
Elmore JG, Armstrong K, Lehman CD, Fletcher SW. Screening for breast cancer. JAMA. 2005;293(10):1245-1256. doi:10.1001/jama.293.10.1245
Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res. 2010;1(2):109-126. https://pubmed.ncbi.nlm.nih.gov/22247839
Lo PK, Sukumar S. Epigenomics and breast cancer. Pharmacogenomics. 2008;9(12):1879-1902. doi:10.2217/14622416.9.12.1879
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66.doi:10.1038/s41572-019-0111-2
Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13(11):1387-1397. doi:10.7150/ijbs.21635
Toriola AT, Colditz GA. Trends in breast cancer incidence and mortality in the United States: implications for prevention. Breast Cancer Res Treat. 2013;138(3):665-673. doi:10.1007/s10549-013-2500-7
DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal A. International Variation in Female Breast Cancer Incidence and Mortality Rates. Cancer Epidemiol Biomarkers Prev. 2015;24(10):1495-1506. doi:10.1158/1055-9965.EPI-15-0535
Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med. 2012;367(21):1998-2005. doi:10.1056/NEJMoa1206809
Moadel RM. Breast cancer imaging devices. Semin Nucl Med. 2011;41(3):229-241. doi:10.1053/j.semnuclmed.2010.12.005
King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA. Background parenchymal enhancement at breast MR imaging and breast cancer risk. Radiology. 2011;260(1):50-60. doi:10.1148/radiol.11102156
Gartlehner G, Thaler K, Chapman A, Kaminski-Hartenthaler A, Berzaczy D, Van Noord MG, et al. Mammography in combination with breast ultrasonography versus mammography for breast cancer screening in women at average risk. Cochrane Database Syst Rev. 2013;2013(4):CD009632. doi:10.1002/14651858.CD009632.pub2
Yuan WH, Hsu HC, Chen YY, Wu CH. Supplemental breast cancer-screening ultrasonography in women with dense breasts: a systematic review and meta-analysis. Br J Cancer. 2020;123(4):673-688. doi:10.1038/s41416-020-0928-1
Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art. Radiology. 2013;268(3):642-659. doi:10.1148/radiol.13121606
Lee B, Lim AK, Krell J, Satchithananda K, Coombes RC, Lewis JS, et al. The efficacy of axillary ultrasound in the detection of nodal metastasis in breast cancer. AJR Am J Roentgenol. 2013;200(3):W314-W320. doi:10.2214/AJR.12.9032
Evans A, Rauchhaus P, Whelehan P, Thomson K, Purdie CA, Jordan LB, et al. Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer?. Breast Cancer Res Treat. 2014;143(1):153-157. doi:10.1007/s10549-013-2747-z
Riegger C, Koeninger A, Hartung V, Otterbach F, Kimmig R, Forsting M, et al. Comparison of the diagnostic value of FDG-PET/CT and axillary ultrasound for the detection of lymph node metastases in breast cancer patients. Acta Radiol. 2012;53(10):1092-1098.doi:10.1258/ar.2012.110635
Cools-Lartigue J, Meterissian S. Accuracy of axillary ultrasound in the diagnosis of nodal metastasis in invasive breast cancer: a review. World J Surg. 2012;36(1):46-54. doi:10.1007/s00268-011-1319-9
Lee B, Lim AK, Krell J, Satchithananda K, Coombes RC, Lewis JS, et al. The efficacy of axillary ultrasound in the detection of nodal metastasis in breast cancer. AJR Am J Roentgenol. 2013;200(3):W314-W320. doi:10.2214/AJR.12.9032
Cools-Lartigue J, Meterissian S. Accuracy of axillary ultrasound in the diagnosis of nodal metastasis in invasive breast cancer: a review. World J Surg. 2012;36(1):46-54. doi:10.1007/s00268-011-1319-9
Sadigh G, Carlos RC, Neal CH, Dwamena BA. Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat. 2012;133(1):23-35. doi:10.1007/s10549-011-1857-8
Masciadri N, Ferranti C. Benign breast lesions: Ultrasound. J Ultrasound. 2011;14(2):55-65. doi:10.1016/j.jus.2011.03.002
Love SM, Barsky SH. Anatomy of the nipple and breast ducts revisited. Cancer. 2004;101(9):1947-1957. doi:10.1002/cncr.20559
Ramsay DT, Kent JC, Hartmann RA, Hartmann PE. Anatomy of the lactating human breast redefined with ultrasound imaging. J Anat. 2005;206(6):525-534. doi:10.1111/j.1469-7580.2005.00417.x
Valeur NS, Rahbar H, Chapman T. Ultrasound of pediatric breast masses: what to do with lumps and bumps. Pediatr Radiol. 2015;45(11):1584-1583. doi:10.1007/s00247-015-3402-0
AlShamlan NA, AlOmar RS, Almukhadhib OY, Algarni SA, Alshaibani AK, Elmaki SA, et al. Characteristics of Breast Masses of Female Patients Referred for Diagnostic Breast Ultrasound from a Saudi Primary Health Care Setting. Int J Gen Med. 2021;14:755-763.doi:10.2147/IJGM.S298389
Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art. Radiology. 2013;268(3):642-659. doi:10.1148/radiol.13121606
Lee B, Lim AK, Krell J, Satchithananda K, Coombes RC, Lewis JS, et al. The efficacy of axillary ultrasound in the detection of nodal metastasis in breast cancer. AJR Am J Roentgenol. 2013;200(3):W314-W320. doi:10.2214/AJR.12.9032
Bughio S, Shazlee K, Ali M, Azmat U, Younus N, Mujtaba S, et al. Ultrasound characterization of benign breast masses: a review. Pakistan J Med Dent. 2017;6(1).
Hu Q, Wang XY, Zhu SY, Kang LK, Xiao YJ, Zheng HY. Meta-analysis of contrast-enhanced ultrasound for the differentiation of benign and malignant breast lesions. Acta Radiol. 2015;56(1):25-33. doi:10.1177/0284185113517115
Chen YY, Fang WH, Wang CC, Kao TW, Chang YW, Yang HF, et al. Examining the Associations among Fibrocystic Breast Change, Total Lean Mass, and Percent Body Fat. Sci Rep. 2018;8(1):9180.doi:10.1038/s41598-018-27546-3
Gao Y, Saksena MA, Brachtel EF, terMeulen DC, Rafferty EA. How to approach breast lesions in children and adolescents. Eur J Radiol. 2015;84(7):1350-1364. doi:10.1016/j.ejrad.2015.04.011
Madjar H. Role of Breast Ultrasound for the Detection and Differentiation of Breast Lesions. Breast Care (Basel). 2010;5(2):109-114. doi:10.1159/000297775
Uniyal N, Eskandari H, Abolmaesumi P, Sojoudi S, Gordon P, Warren L, et al. Ultrasound RF time series for classification of breast lesions. IEEE Trans Med Imaging. 2014 Oct 24;34(2):652-61. doi:10.1109/TMI.2014.2365030
Malherbe K, Khan M, Fatima S. Fibrocystic Breast Disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; August 8, 2023. https://pubmed.ncbi.nlm.nih.gov/31869073/
Johansson A, Christakou AE, Iftimi A, Eriksson M, Tapia J, Skoog L, et al. Characterization of Benign Breast Diseases and Association With Age, Hormonal Factors, and Family History of Breast Cancer Among Women in Sweden. JAMA Netw Open. 2021;4(6):e2114716. doi:10.1001/jamanetworkopen.2021.14716